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Abstract

This study introduces an optimal charging decision making framework for con-
nected and automated electric vehicles under a personal usage scenario. This
framework aims to provide charging strategies, i.e. the choice of charging sta-
tion and the amount of charged energy, by considering constraints from personal
daily itineraries and existing charging infrastructure. A data-driven method is
introduced to establish a stochastic energy consumption prediction model with
consideration of realistic uncertainties. This is performed by analyzing a large
scale electric vehicle data set. A real-time updating method is designed to con-
struct this prediction model from new consecutive data points in an adaptive
way for real-world applications. Based on this energy cost prediction frame-
work from real electric vehicle data, multistage optimal charging decision mak-
ing models are introduced, including a deterministic model for average outcome
decision making and a robust model for safest charging strategies. A dynamic
programming algorithm is proposed to find the optimal charging strategies. De-
tailed simulations and case studies demonstrate the performance of the proposed
algorithms to find optimal charging strategies. They also show the potential ca-
pability of connected and automated electric vehicles to reduce the range anxiety
and charging infrastructure dependency.
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1. Introduction

Electrification of transportation by increasing electric vehicle (EV) usage
has important impacts on greenhouse gas emissions and energy dependency
(Sioshansi and Denholm (2009); Eberle and Von Helmolt (2010); Armaroli and
Balzani (2011)). Tremendous work is being performed to electrify powertrain
systems and the transportation system (Bilgin et al. (2015)). Accelerating EV
adoption may be a key strategy for helping regions achieve national- and state-
level transportation sustainability. Besides great progress in electric drive sys-
tems, recently most automakers and some high-tech companies, e.g. Google,
Uber, etc., are focusing on implementing autonomous driving technology. They
are trying to put forward the real-world application of this technology. Fur-
thermore, the automotive OEMs are combining autonomous driving technology
with electric vehicles. For example, all Tesla cars being produced now have
full self-driving hardware (Tesla (2016)). General Motors is also testing the
autonomous driving on its new Chevrolet Bolt (electrek (2017)). Only a few of
them are named here. Car-sharing or car-hailing companies plan to use both
electric vehicles and autonomous driving in their transportation network. Self-
driving technology is an important aspect to improve their service quality and
reduce operation costs. Electrified vehicles can help to improve the energy ef-
ficiency. These two trends will work together to improve the intelligence and
sustainability of transportation system in the coming future.

Current electric vehicles still have the essential barrier of long charging time
compared to conventional vehicles. Relative high costs are necessary for sat-
isfying charging requirements. For example, the construction cost of charging
stations, the long charging time for EV user, etc.. However, the introduction of
autonomous driving technology would remove the challenge of co-locating charg-
ing infrastructure with driver destinations and presents a driver-free method for
EVs to reach nearby charging stations. This will significantly change the charg-
ing behavior of electric vehicles. EV driver will no longer need to be present
at charging stations for charging actions. Automated EVs can drive to nearby
charging stations to perform charging actions by themselves when necessary.
Meanwhile, connected vehicles technology is emerging to make real-time connec-
tions between vehicles and infrastructure networks. Electric vehicles will have
the capability to sense and obtain pertinent information from nearby charging
station networks and then calculate the corresponding costs and availability
for charging. This information will be very helpful for real-time, optimal and
sustainable charging decision-making for electric vehicles. It has to say that
autonomous vehicle technology cannot solve all the city transportation problem
as discussed in UITP (2017). However, it has huge potential to improve the
convenience and sustainability of EV charging actions.

This study attempts to establish an optimal and sustainable charging decision-
making framework for connected and automated electric vehicles (CAEVs). The
personal usage scenario of CAEVs with time and distance constraints of daily
itineraries is the main focus in this paper. The objective of this framework aims
to design optimal charging strategies for minimum charging cost (e.g. monetary
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cost) outside home and also minimization of travel or energy cost attributed to
charging actions. More details will be introduced in the following sections. This
paper is organized as follows: Section 2 provides the related previous research
and also our contributions in this paper. Section 3 introduces a multi-channel
stochastic energy consumption prediction model and the corresponding real-
time updating algorithm based on the data-driven method. Based on the energy
cost prediction model, multistage optimal charging decision-making models are
proposed in Section 4. Section 5 proposes a dynamic programming procedure
for optimal charging strategies. Simulations and case studies in Section 6 are
used to demonstrate the introduced framework. Section 7 concludes our work
in this paper and also discusses some potential future research.

2. Previous Research and Our Contributions

Charging decision making for electric vehicles includes several aspects, e.g.
the deployment of charging infrastructure, the analysis of charging behavior
and the design of charging strategies. A lot of research has been performed for
charging station deployment and charging behavior analysis. Different methods
have been introduced for charging station deployment according to specific re-
quirements and realistic situations, for example, deployment of both stationary
and dynamic charging infrastructure for electric vehicles along traffic corridors
in Chen et al. (2017b), data-driven method for siting and sizing of electric taxi
charging stations in Yang et al. (2017), charging station deployment on urban
road network in He et al. (2015, 2016); Giménez-Gaydou et al. (2016); Frade
et al. (2011); Yi and Bauer (2016a), activity-based approach in Dong et al.
(2014), and many more, e.g. Xylia et al. (2017); Tu et al. (2016); Ghamami
et al. (2016); Li et al. (2016), etc. Deployment methods of wireless charging fa-
cilities are also being investigated in current literature, for example, Chen et al.
(2017b), Deflorio and Castello (2017), Fuller (2016), Riemann et al. (2015). For
charging behavior analysis, two multinomial logit-based and two nested logit-
based models are proposed in Yang et al. (2016) for modeling the charging
and route choice behavior of BEV drivers. The behaviors of electric vehicle
driver and parking pattern are analyzed in (Marmaras et al. (2017); Latinopou-
los et al. (2017); Birrell et al. (2015)). In contrast to a large body of literature
on charging station deployment and charging behavior analysis, studies looking
at the design of charging strategies of electric vehicles in a connected and fully
automated setting are more limited.

The topic of optimal charging decision making in this paper focus on the
design of charging strategies. It is also part of smart charging, which improves
the interactions among the smart grid and EVs. Smart charging has been
investigated thoroughly in previous research from different aspects. Most of
them focused on the interaction with the power grid, for example, the smart
energy supply (Wang et al. (2016)) and the impact of charging action on the
power grid (Sundstrom and Binding (2012); Hu et al. (2014)). However, smart
charging management from the viewpoint of the electric vehicle is also a very
important aspect for EV users. The problem studied in this paper can be
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considered as trip level charging management for travel demand. An intelligent
and sustainable way to charge is crucial to improve the driving experience and
reduce the range anxiety of electric vehicle users. But there is little research
about this topic. Most topics focused on the energy demand estimation (Bae
and Kwasinski (2012); Yi and Bauer (2016b)) or existing charging behavior
analysis (Marmaras et al. (2017); Latinopoulos et al. (2017); Yang et al. (2016);
Birrell et al. (2015); Smart and Schey (2012)). This is because most current
charging decisions are made by EV owners according to their experiences and
driving demand. A charging decision-making system for current personal EV
usage is not as important as other problems. There is some research on charging
decision making in the fleet management system, for example the work in (Chen
et al. (2016a), Pourazarm et al. (2016)). Charging strategy is a relatively more
important aspect in EV fleet operation than for individual users. It aims to make
sure an EV fleet can always have enough energy to perform services. However,
this research doesn’t investigate decision making by involving the autonomous
driving setting. And there are different requirements for personal and fleet
vehicle usage.

With the emerging of autonomous driving and its application in electric
vehicles, the charging decision making should be taken over by the vehicles.
Autonomous electric vehicles will require the capability to make charging de-
cisions according to the battery energy state, the travel demand and also the
available charging infrastructure. Automated electric vehicle charging stations
will become available in the future (Corbett and Maniaci (2013); Tesla (2017)).
Some works have touched this topic under the car-sharing situation. The work
in Fagnant and Kockelman (2014) describes the design of an agent-based model
for shared autonomous vehicle (SAV) operations. Chen et al. (2016b) further ex-
plores the management of a fleet of shared autonomous electric vehicles (SAEVs)
in a regional, discrete-time, agent-based model. Although charging actions have
been touched in this paper, the discussion for charging decision making is rela-
tively initial. None of this previous work investigates the charging decision mak-
ing for the connected and automated electric vehicles under a personal usage
scenario. Due to the fully self-driving and self-charging capability assumption,
electric vehicles can be charged at locations that are near the visited locations.
Optimal charging strategies can help CAEVs to manage the charging actions
along the route in order to make sure future itineraries can be completed with
enough energy.

In order to solve this trip-level charging decision making problem, a predic-
tion model of energy demand in coming trips is necessary. Previous methods
studied energy cost prediction from two main aspects: One aspect is the phys-
ical model method, for example, tractive effort models (Prins et al. (2013)),
powerbased energy consumption models (Yi and Bauer (2017a, 2016b); Fiori
et al. (2016)) and energy consumption model based on generic high-level spec-
ifications and technical characteristics (Genikomsakis and Mitrentsis (2017)).
The other aspect comprises data analysis methods, for example, feature-based
linear regression from historical driving data (Ondruska and Posner (2014)),
a systematic energy consumption estimation approach based on driving condi-
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tions (Zhang and Yao (2015)), and multiple linear regression methods based
on real-world data (De Cauwer et al. (2015); Chen et al. (2017a)). However,
physical models need high-resolution real time information to support accurate
predictions. Data analysis methods in the literature don’t involve inner physical
relationships between the energy cost and traffic conditions. To our best knowl-
edge, previous methods didn’t model the uncertainties of energy cost. This
should be an important aspect under different traffic and environmental condi-
tions in a realistic world. The consideration of uncertainties is very crucial for
robust charging strategies.

The main objective of this research is to introduce an optimal charging de-
cision making framework for CAEVs under a personal usage scenario. This
framework aims to provide charging strategies, i.e. the optimal choice of charg-
ing station outside home and the amount of charged energy, by considering
constraints from personal daily itineraries and existing charging infrastructure.
Abundant real world EV data is utilized to construct stochastic energy consump-
tion prediction model, which is an important and necessary part of the charging
decision making framework. The proposed framework is a dynamic and multi-
stage decision making process by considering uncertainties of EV energy cost
and also dynamics of itinerary information. Detailed main contributions of this
paper are divided into four parts and are summarized as follows:

• A multi-channel stochastic energy cost prediction framework: This frame-
work is learned and constructed by combining the essential vehicle physical
model and the analysis of numerous real-world collected data.

• A real-time updating algorithm for the energy cost prediction model: This
algorithm is proposed to extend the online learning capability of the pre-
diction model for electric vehicles in real-world applications and condi-
tions.

• Multistage charging decision-making models: Both of the deterministic
and robust models are constructed for average outcome decision-making
and safe charging strategies, respectively. Here the term “safe” means that
proposed charging strategies can always make sure CAEVs have enough
energy to finish a desired itinerary with consideration of uncertainties of
energy cost in realistic situations.

• A dynamic programming algorithm for optimal charging strategies: This
algorithm helps CAEVs to obtain the charging strategies dynamically at
each visited location with a lower computational cost.

3. Data-Driven Multi-Channel Stochastic Energy Cost Prediction

3.1. The EV Project Data Set

Idaho National Laboratory partnered with ECOtality, Nissan, General Mo-
tors, and more than 10,000 other city, regional and state governments, electric
utilities, other organizations and members of the general public, to deploy over
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12,000 AC Level 2 (208-240V) charging units and over 100 dual-port DC fast
chargers in 20 metropolitan areas. Approximately 8,300 Nissan LEAF, Chevro-
let Volts, and Smart ForTwo Electric Drive vehicles were also enrolled in the
project. The EV Project is a large deployment and evaluation project of electric
drive vehicles and charging infrastructure in United States. Project participants
gave written consent for EV Project researchers to collect and analyze data
from their vehicles and/or charging units. The data collection phase of The EV
Project ran from January 1, 2011, through December 31, 2013 and captured al-
most 125 million miles of driving and 4 million charging events. Idaho National
Laboratory is responsible for analyzing the data collected and publishing re-
sults. The detailed information of this project and data set can be found in INL
(2013) and Smart and Schey (2012). In the subsequent analyses and modeling,
only the dataset of Nissan Leaf are utilized.

3.2. EV Energy Consumption Analysis and Data Demonstration

As we introduced in the the literature review, many previous research has
been performed to estimate the energy cost. One of the important methods
utilizes the vehicle longitudinal dynamic model. The longitudinal tractive force
can be modeled as:

F (v) =
1

2
ρCdA(v − w)2 + CrMgv cos(α) + M̃a+Mg sin(α) (1)

In this equation, v is vehicle speed, Cd denotes the air drag coefficient, A is
the projected frontal area, w is the wind speed component in the direction of
vehicle speed, ρ is the air density, M is the vehicle mass, Cr is the coefficient
of rolling resistance, α is the angle of road surface for the slope or grade, M̃
is the equivalent mass considering the inertial mass factors and a is the vehicle
acceleration. The detailed analysis of this equation can be found in Yi and
Bauer (2017b).

The longitudinal dynamical model describes tractive force coupled with a
speed profile. It describes wheel energy or power consumption depending on
several realistic conditions, for example, traffic condition, environmental condi-
tion, terrain. From the real world data demonstration in Figure 1, we can see
that there exist huge uncertainties for the energy cost for the same distance of
trip. In fact, it is very difficult to obtain all these real time data to estimate
an accurate energy cost along a road segment. In real-word operation, an ap-
proximate stochastic model that can provide the average energy cost and the
corresponding uncertainties may be good enough for charging decision making.
Once we can know the uncertainty pattern of energy cost, we can provide the
optimal strategies for overall average outcome or safe charging strategies for
worst case considerations. Uncertainties of EV energy cost is especially impor-
tant when EVs have low state of charge. Most of charging actions may happen
when EVs have battery low state of charge. These uncertainties may have big
effect on the final battery energy state after some trips and also the future po-
tential energy demand for an itinerary. In order to provide more accurate and
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Figure 1: Trip energy cost versus distance for Nissan Leaf in EV Project

globally optimal charging strategies, it is important and necessary to consider
and investigate these uncertainties in the energy consumption prediction model.

From the longitudinal dynamic model, the energy cost per mile should have
an approximate quadratic relationship with vehicle speed under constant vehicle
speed, as shown in Equations (2) and (3), where Ec is the energy cost during
a trip segment, Eac is the energy cost of accessory loads, d is the distance of
trip segment, η is the powertrain efficiency and γ0, γ1, γ2 are the coefficients
obtained from Equation (1). This function can model the average energy cost
of EV along a road segment.

Ec = η(F (v)d) + Eac (2)

Ec/d = η(γ2V
2 + γ1V + γ0) +

Eac

d
(3)

Figure 2 demonstrates the distribution for energy cost per mile with regard to
different vehicle speeds. Box plot is utilized to illustrate the uncertainties under
different average speeds. In this figure, the entire average speed range is divided
into 20 intervals equally. We can see that the average cost has an approximate
quadratic relationship with average vehicle speed. But the uncertainties or
variances are very different under different average speeds and accessory loads.
Lower vehicle speeds have larger uncertainties. It is reasonable that city driving
situations with low speeds can be affected more by traffic and environmental
conditions and accessory loads. In order to characterize more details of this
model and describe the uncertainties in a more accurate way, it is necessary to
provide individual uncertainty models for different average speeds.
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Figure 2: Energy cost per mile with regard to average speed and the corresponding box plot
with regard to 20 speed intervals

3.3. Multi-Channel Stochastic Energy Consumption Model

As shown in Figure 2, with various average speeds on trip segments, uncer-
tainties of energy cost have much difference due to several realistic situations,
e.g. traffic and environmental conditions. We need to construct various energy
consumption models for different driving speed conditions. The whole range
of vehicle speed is divided into several segments. Assume that the energy cost
model for each speed interval follows the same random pattern. We can have
the corresponding values of mean and variance of stochastic model for each
speed interval. More intervals can provide high-resolution energy consumption
prediction model. The following is a discretization with N speed intervals.

V = [v0, v1]
⋃

(v1, v2]
⋃
...
⋃

(vN−1, vN ]

where v0 is the minimum speed value vmin and vN is the maximum speed value
vmax. Suppose each sub interval Vi = (vi−1, vi] has the corresponding mean
mi and variance σ2

i for energy cost per mile on each trip segment. Then we
can have the mean value set for energy cost per mile m = {m1,m2, ...,mN}
and variance value set for energy cost per mile σ2 = {σ2

1 , σ
2
2 , ..., σ

2
N}. In order

to obtain the mean and variance set for energy cost per mile, the entire data
set has been divided into N subsets according to the average speed. In each
subset, the mean and variance of energy cost per mile is calculated. They are
illustrated in Figure 3 and Figure 4. From data points of mean and variance,
we can fit them and derive the prediction function for mean value and variance
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Figure 3: Average energy cost per mile prediction function

on any specific vehicle speed in the given range. The specific fitted functions
obtained from EV project data set are as follows:

• Mean prediction function of energy cost with regard to vehicle speed

Fmp(v) = 0.0001085v2 − 0.007861v + 0.4334

• Variance prediction function of energy cost with regard to vehicle speed

Fvp(v) = 0.09072504e−0.097365332v + 0.00218884

We need to clarify that these models from EV project data set are not
universal. This is just a demonstration for Nissan Leaf from the data we have.
But the modeling process is applicable for other electric vehicles. The fitted
functions are shown in Figure 3 and Figure 4. Mean value prediction function is
a quadratic function and the variance prediction function is a exponential-like
function. By using these two functions, mean value and variance for any vehicle
speed in the given range will be derived.

Energy consumption prediction in illustrated models only utilizes the vehicle
speed as the input. The reason that only one factor used is due to the resolution
limitation of the EV Project Dataset. Energy consumption of EVs depends on
several other realistic conditions, for example, temperature, vehicles load and
powertrain efficiency, etc. However, the proposed data-driven methodology in
this paper has the capability to consider other relevant features if the corre-
sponding data is collected. Generally it can be a multi-dimensional and multi-
channel stochastic model according to the available real world data. Currently
the available data can only help us to create a one-dimensional multi-channel
stochastic model with regard to vehicle speed. In the future, we will try to col-
lect more detailed energy consumption data under different realistic conditions
and construct multi-dimensional multi-channel stochastic model, for example,
two-dimensional multi-channel model with consideration of both vehicle speed
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Figure 4: Variance prediction function for energy cost per mile with regard to vehicle speed

Figure 5: Overall framework for multi-channel energy consumption prediction model

and ambient temperature condition, or three-dimensional multi-channel model
with consideration of speed, vehicles load and ambient temperature, etc. There-
fore, the introduced framework definitely has the capability to construct more
accurate energy consumption models.

3.4. Real-Time Updating Algorithm for Energy Consumption Prediction

In previous analyses, we have utilized the historical data set to construct
the stochastic energy consumption model. But in realistic situations, we can-
not have the detailed dataset for each EV at the beginning. But data can be
collected all the time for each vehicle when the vehicles are being driven and re-
alistically, a base model would be in-place from an OEM. Therefore, a real-time
updating algorithm for energy consumption prediction model is necessary for
optimization in real-world applications. In this paper, the real-time updating
framework in Figure 5 is proposed and evaluated.

For each new completed trip, we can have the distance d[k], the travel time
t[k] and the corresponding energy cost Eav[k]. Average speed v[k] and energy
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Figure 6: Distributions of energy cost per mile in nine average vehicle speed intervals

cost per mile Eepm[k] on this trip segment are derived. According to the average
speed, the channel i to be updated is determined at time step k. Denote the
mean value and variance of channel i at step k are mi[k] and σ2

i [k], respectively.
The following equations are used to update the mean value mi[k] and variance
σ2
i [k] in an online manner. The detailed functional analysis and proof for this

algorithm can be found in Welford (1962).

mi[k] =
k − 1

k
mi[k − 1] +

1

k
Eepm[k] (4)

σ2
i [k] =

k − 1

k
σ2
i [k − 1] +

k − 1

k2
(Eepm[k]−mi[k − 1])2 (5)

With the power of this algorithm, the mean values and variance can be
calculated iteratively in a real-time way. At each step k, we can utilize the
obtained estimation to find the up-to-date prediction functions, which provide
the corresponding predictions mp and σ2

p.
Once mean value and variance of energy cost per mile are predicted for

a given vehicle speed, we can use them to construct the corresponding lower
bound as Elw and upper bound as Eup for the description of uncertainties. Fig-
ure 6 illustrates the distributions of nine average vehicle speed intervals. Since
the energy cost per mile is always positive, based on the histogram results in
Figure 6, the log-normal distribution is a reasonable assumption to describe the
uncertainties. According to these log-normal distributions, we can calculate the
lower bound and upper bound for each average speed. For example, if we have
the mean value of mp and variable σ2

p, denote the corresponding distribution

11



Figure 7: A Model for daily itinerary

of energy cost per mile as Epm ∼ Lognormal(mp, σ
2
p) is obtained. Suppose the

cumulative distribution function is Pr(Epm), we can define the lower bound Elw

as Pr(Epm ≤ Elw) ≤ 0.05 and upper bound Eup as Pr(Epm ≥ Eup) ≥ 0.95.
Here the probability interval [0.05, 0.95] is just an example, it can be defined
according to realistic situations. This is similar to the confidence interval.

The lower bound and upper bound of energy cost per mile aid in determining
prediction uncertainties for each future trip segment. By considering these un-
certainties, the following proposed robust decision-making model will design a
safe charging strategy in case of some random high energy costs along the route.
Only the average speed information is utilized to illustrate of the uncertainty
of energy cost prediction model due to the resolution limit of EV project data
set. More detailed real-world data set could tighter the uncertainty if known a
priori, i.e. temperature. This means that the proposed method is extensible to
obtain more accurate energy consumption prediction model with multiple input
variables.

4. Charging Decision-Making Optimization Models

4.1. Modeling

4.1.1. Connected and Automated Electric Vehicle

This paper considers the charging decision making for connected automated
electric vehicles. Here the “connected” and “automated” means at least two
aspects: (1) electric vehicles are connected with the infrastructure network
and have the information from nearby charging stations, for example, loca-
tion, charging level, waiting time, price, etc. (2) Electric vehicles are fully au-
tonomous vehicles and can perform the charging actions by themselves. Based
on these assumptions, electric vehicles can have totally different charging be-
haviors because drivers are not required to be present at the charging station.
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4.1.2. Itinerary Modeling

A typical personal daily itinerary starts from home and ends at home. In or-
der to consider different situations and make sure the extensibility of proposed
models, an investigated itinerary considered in the optimal charging decision
making framework, as shown in Figure 7 is assumed to have the following in-
formation:

• Origin location LO and destination location LD: Different origin and des-
tination information represent different scenarios. The most common one
for a daily itinerary is that both of origin and destination are home.

• Intermediate visited location set Lv and |Lv| = Nv. At each visiting
location Lk

v and 1 ≤ k ≤ Nv, vehicle owner can have the corresponding
arrival time T k

av and departure time T k
dp. Then the available time for

charging action is Tuc[k] ≤ T k
dp − T k

av.

• Initial energy state at origin and the requirement of energy state at des-
tination: Assume the initial energy state is known at the origin. The
energy state requirement of destination will influence the charging strate-
gies along the itinerary. If the destination is at home, we can assume that
no specific energy state value is required for electric vehicles due to the
capability of charging at home.

4.1.3. Charging Infrastructure Network

Due to the assumption of connected vehicles, CAEVs can obtain the follow-
ing information from charging infrastructure network:

• Location information of nearby charging stations. The location set of
charging stations near Lk

v is denoted as Lk
c and |Lk

c | = Nk
c . Here we assume

that CAEVs only perform the charging actions in charging stations which
are in a certain driving range from Lk

v .

• Each charging station i, 0 ≤ i ≤ Nk
c provides the information of charging

level or maximum charging power P i
c , charging price Pr(t), waiting time

Tw(t) and the corresponding charging function. There are different charg-
ing price models. In this paper, we utilize the price model as dollar/kWh
in the decision-making framework. It can easily be extended to other price
models.

4.2. Optimal Decision-Making Formulation

The charging decision-making needs to provide charging strategies based on
the battery energy state and travel demand for an investigated trip. Charging
strategies include the amount of charged energy and also the selected charging
station near each visited location. The mathematical description for this prob-
lem will be given as follows. A scheme in Figure 8 illustrates the connections
between these mathematical model parts.
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Figure 8: A scheme of dynamic decision making process

Nv visited locations except home are investigated in the given itinerary. De-
fine there are in total Nv stages for the entire decision-making process. Denote
a specific stage as k, where 1 ≤ k ≤ Nv.

(1) State s[k]:
s[k] is the battery energy state of CAEV when arrived at a visited loca-

tion Lk
v during a daily itinerary. This can be the state after charged for back-

ward algorithm or the state before charged for forward algorithm in multistage
decision-making.

(2) Decision action ak = {Ec[k], ~x[k]}:
Ec[k] is the amount of charged energy when EV user at location Lk

v . ~x[k]
has Nc[k] elements. Nc[k] is the number of available charging station in a

neighborhood area. Each xi[k] in ~x[k] can only be 0 or 1. And
∑Nc

i=1 x
i[k] ≤ 1.

This means the vehicle can only utilize at most one charging station to obtain
the required energy. Of course, when the available charging time is long enough,
maybe CAEV can complete the charging actions at different charging stations.

Therefore, we have Ec[k] =
∑Ni

c
i=1E

i
c[k]xi[k], where Ei

c[k] is the charged energy
in charging station i at stage k.

(3) Utility function at stage k:

f(s[k], a[k], k) =

Nc[k]∑
i=1

Ei
c[k]P i

r [k]xi[k] + λ

Nc[k]∑
i=1

Ei
cc[k]xi[k] (6)

This utility function aims to calculate the monetary cost of energy charged
away from home and also the additional travel energy cost when performing
charging actions. Minimizing this utility function aims to improve the sustain-
ability of both monetary and energy costs. In this function, besides the variables
we introduce in previous parts, Ei

cc[k] is the transportation energy cost for the
charging action to the nearby charging station i. P i

r [k] is the charging price by
dollar/kWh in charging station i. λ is a weighting factor.

(4) Transition functions:

Denote E
(k,k+1)
tc is the trip energy cost from location Lk

v to location Lk+1
v ,

• Forward state transition (used for final state fixed)

s[k + 1] = s[k] + Ec[k]− E(k,k+1)
tc − 2

Nk
c∑

i=1

Ei
cc[k]xi[k] (7)
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where s[k] is the battery energy state before charging action performed,
Ec[k] is the energy charged at stage k, Ei

cc[k] is the energy cost for per-
forming charging action from location Lk

v to charging station Li
c[k].

• Backward state transition (used for initial state fixed)

s[k] = s[k + 1]− Ec[k + 1] + E
(k,k+1)
tc + 2

Nk+1
c∑
i=1

Ei
cc[k + 1]xi[k + 1] (8)

where s[k] is the battery energy state after charging action performed,
Ec[k + 1] is the energy charged at stage k + 1, Ei

cc[k + 1] is the energy
cost for performing charging action from location Lk+1

v to charging station
Li
c[k + 1].

(5) Overall utility function U(s[Nv], a[Nv]):
Overall cost for charging actions along the entire itinerary outside home is

the summation of utility cost on each stage k.

U(s[Nv], a[Nv]) = f(s[0], a[0], 0) +

Nv∑
k=1

f(s[k], a[k], k) (9)

where f(s[0], a[0], 0) is the initial cost at home. In our case, f(s[0], a[0], 0) =
0 without consideration of charging actions at home. It is included for the
completeness of formulation.

4.3. Optimization Models

4.3.1. Deterministic Case

In the deterministic case, we utilize an average energy cost for each trip seg-
ment. The uncertainties of energy cost on each trip segment are not considered
in this optimization model. This kind of model will provide the decision-making
strategies in an average sense. The optimization model is constructed as follows:

min
a[1],...,a[Nv ]

f(s[0], a[0], 0) +

Nv∑
k=1

f(s[k], a[k], k)

s.t. s[0] = S0

s[k − 1] = s[k]−
Nk

c∑
i=1

Ei
c[k]xi[k] + E

(k−1,k)
tc + 2

Nk
c∑

i=1

Ei
cc[k]xi[k]

Pd[k] ≤ s[k] ≤ Cp

0 ≤ Ei
c[k] ≤ Ei

upr[k]

xi[k] = 0 or 1, and

Nk
c∑

i=1

xi[k] ≤ 1

k = 1, ..., Nv

(10)
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Besides the formulations included in previous sections, some more con-
straints are introduced in this optimization model:

(1) Pd[k] ≤ s[k] ≤ Cp is the constraint of battery energy state. Cp is the
battery capacity and Pd[k] is the energy demand prediction for future trips at
stage k. For example:

• One-step prediction

Pd[k] = E
(k,k+1)
tc

• Two-step prediction

Pd[k] = E
(k→k+1)
tc + E

(k+1,k+2)
tc

(2) 0 ≤ Ei
c[k] ≤ Ei

upr[k] is the constraint for charged energy. Ei
upr[k] is the

available maximum energy obtained from charging station i at stage k.

Ei
upr[k] = f icr(s[k − 1]− E(k−1,k)

tc − Ei
cc[k], T i

c [k])

This function is used to determine the maximum amount of available energy
from charging station i. It depends on current battery energy state and also
the available charging time T i

c . This is because the charging rate may not be
constant and it has a nonlinear relationship with regard to the battery energy

state. The available charging time can be calculated by T i
c [k] = Tuc[k]−2di[k]

vi[k]−
T i
w[k], where Tuc[k] is the total time that CAEV user can spend at location
Lk
v , di[k] and vi[k] are the distance and average speed respectively to charging

station i from location Lk
v . In order to obtain the maximum available charge,

we need to consider the charging rate function of charging station i. We can say
charging stations of different levels can have different charging rate functions.
In realistic situations, particularly for fast charging, it is not constant depending
on battery state of charge. In the simulations of this paper, we approximate that
charging power is constant. However, it can be extended to other non-constant
situations, because the Ei

upr[k] is just an input of this decision-making model.

4.3.2. Robust Case

From the analysis for energy consumption model, the energy cost of each
trip segment has uncertainties due to the traffic conditions, environmental and
terrain information. In order to obtain the safe strategies for completing the
itinerary with enough energy, these uncertainties are necessary to be involved
in the decision-making model.

Equation (11) provides a robust optimization to consider the uncertainties
in energy cost. This is a worst case optimization model. In this model, the trip
energy costs have the lower bound and upper bound for both regular trips and

the trips for charging actions, for example, E
(k,k+1)
tc ∈ [Ek

lw, E
k
up] and Ei

cc[k] ∈
[Ei

lw[k], Ei
up[k]]. These lower and upper bounds for uncertainties can be derived

from the proposed bound reconstruction algorithm in Section 3.
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min
a[1],...,a[Nv ]

max
E

(k,k+1)
tc ∈[Ek

lw,Ek
up]

Ei
cc[k]∈[Ei

lw[k],Ei
up[k]]

f(s[0], a[0], 0) +

Nv∑
k=1

f(s[k], a[k], k)

s.t. Constraints in Equation (10)

(11)

Equation (11) has the same constraints as Equation (10). The considera-
tions of uncertainties for energy cost makes this decision-making model have
the capability to find safer charging strategies in real situation.

5. Dynamic Programming for Optimal Strategies

5.1. Deterministic Case

The objective for the optimization model in Equation (10) is to minimize the
overall cost for charging actions outside home. The task is to find a sequence
of actions, a[1], ..., a[Nv] that minimize the overall utility function. Dynamic
programming technology is promising to solve this type of multistage problem.
Dynamic programming in this case involves the recursive formulation of the cost-
to-come from an initial state. Assume we don’t consider the charging action at
home, we can say the initial cost at home is 0. This mean that a[0] = 0. Suppose
that the initial cost is defined as U(s[0], a[0]) = 0.

The initial optimal cost-to-come is:

U∗0,0(s[0]) = U(s[0], a[0])

For an intermediate stage, K ∈ {1, ..., Nv} the following represents the opti-
mal cost-to-come:

U∗0,K(s[K]) = min
a[0],...,a[K]

U(s[0], a[0]) +

K∑
k=1

f(s[k], a[k], k)

According to the principle of optimality, we can have the following relation-
ship

U∗0,K(s[K]) = min
a∗[0],...,a∗[k−1],a[K]

U∗0,K−1(s[K − 1]) + f(s[K], a[K],K)

Based on this equation , the following algorithm is proposed to solve this
problem:
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Algorithm 1: Dynamic Programming for Multistage Charging Decision-
Making

(1) When k = 0:
U(s[0], 0) = 0 and a[0] = 0;
(2) When k ≥ 1:
Using this equation:

U∗0,k(s[k]) = min
a∗[0],...,a∗[k−1],a[k]

U∗0,k−1(s[k − 1]) + f(s[k], a[k], k)

Solve the following static problem for action a∗[k] in stage k

min
a[k]

U∗0,k−1(s[k − 1]) + f(s[k], a[k], k)

s.t. s[k − 1] = s[k]−
Nk

c∑
i=1

Ei
c[k]xi[k] + E

(k−1,k)
tc + 2

Nk
c∑

i=1

Ei
cc[k]xi[k]

Pd[k] ≤ s[k] ≤ Cp

0 ≤ Ei
c[k] ≤ Ei

upr[k]

xi[k] = 0 or 1, and

Nk
c∑

i=1

xi[k] ≤ 1

(3) Let k = k + 1 , if k ≤ Nv, return step (2).

5.2. Robust Case

Similar to the deterministic case, the following relationship for a robust
decision-making model can be derived according to the principle of optimality.

U∗0,K(s[K]) = min
a[K]

max
E

(k,k+1)
tc ∈[Ek

lw,Ek
up]

Ei
cc[k]∈[Ei

lw[k],Ei
up[k]]

U∗0,K−1(s[K−1])+f(s[K], a[K],K) (12)

According to this relationship, we can utilize the similar procedure in Al-
gorithm 1 to find the optimal charging strategies. The above equation is a
static optimization problem. In order to solve this optimization problem, we
need to perform an equivalent transformation. It has the following equivalent
optimization model:
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min
a[k]

v

s.t. s[k − 1] = s[k]−
Nk

c∑
i=1

Ei
c[k]xi[k] + E

(k−1,k)
tc + 2

Nk
c∑

i=1

Ei
cc[k]xi[k]

Pd[k] ≤ s[k] ≤ Cp

0 ≤ Ei
c[k] ≤ Ei

upr[k]

U∗0,k−1(s[k − 1]) + f(s[k], a[k], k) ≤ v
Ei

lw[k] ≤ Ei
cc[k] ≤ Ei

up[k]

Ek
lw ≤ E

(k,k+1)
tc ≤ Ek

up

xi[k] = 0 or 1, and

Nk
c∑

i=1

xi[k] ≤ 1, i = 1, ..., Nk
c

(13)

During each stage k, we need to solve the Equation (13) to obtain the robust
optimal charging action a[k]. In this equivalent model, energy cost components
are considered to be decision variables with lower and upper bounds. This model
has involved the uncertainties into charging decision-making.

The equivalent transformation from Equation (11) (min-max optimization
problem) to Equation (13) is a very common technology to solve the non-
probabilistic robust optimization model in Equation (11). The detailed expla-
nation of this method can be found in Ben-Tal et al. (2009). This means that
we can transfer a worst-case min-max optimization problem to a new general
solvable optimization problem. Therefore, we have the new objective function
and constraints as shown in Equation (13). This robust model tries to find the
strategies for the worst case analysis. So this is a worst case decision making
for safe charging decision strategies. This decision making model only takes use
of the derived lower and upper bound of EV energy cost at each trip segment.
Energy state of EV transits with some uncertainties (maybe some probability
distributions), but the proposed model only considers boundary values of en-
ergy consumption to make sure that charging strategies must work even with
the worst case of energy cost.

6. Simulations and Case Study

6.1. Simulations for Real-Time Updating Framework

In Section 3, we have proposed a multi-channel stochastic energy consump-
tion prediction model to estimate the average energy cost and also the corre-
sponding uncertainties. A real-time updating algorithm has been introduced
for online model construction by using the new measured data points in future
real-world applications. We have provided the data analysis description of the
entire data set in Section 3. In this simulation, we would like to utilize the same
data set to provide the evaluations of the real-time model updating algorithm.
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Figure 9: Number distribution of data points in 20 speed intervals

Table 1: Specific Numbers of Data Points for Selected Five Intervals
Interval ID Speed Interval (mph) Number of Data Points

1 [10.000 , 13.078] 441345
5 [22.310, 25.388] 820688
10 [37.699, 40.766] 275171
15 [53.087, 56.164] 26137
20 [68.475, 71.552] 19

Data samples from the EV project will be fed into the model one by one
in a consecutive way. Each sample is a trip segment with an average speed.
The entire vehicle speed range is divided into 20 sub intervals equally in this
simulation. According to the rules proposed in the multi-channel framework,
we can have the sample number distribution in each vehicle speed interval, as
shown in Fig. 9. We can see that most of the vehicles in the EV Project are
utilized in city driving situations. Table 6.1 provides the specific numbers of
data points in five speed intervals that are utilized for demonstrations in the
following results.

Fig. 10 illustrates the estimation traces of mean values of energy cost per
mile for five different speed intervals. When more samples are utilized to update
the estimation, mean values become stable. However, the traces have different
patterns. This is because they have different number distributions in this EV
project data set. Most of them come from city drive situations. In the intervals
with relative low speed values, estimation values converge much faster due to
much more data samples. The special case is the interval No.20 with the highest
speed value in this data set. Only 19 samples exist. This is extremely small
comparing to the entire data set with the size of more than 6 million samples.
This introduces large fluctuations in the estimation process. Fig. 11 provides
the estimations traces of variance of energy cost per mile for five different speed
intervals, which are the same as Fig. 10. All these variances converge to the final
values that are estimated by one time from the entire data set. The converge
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Figure 10: Mean value trace of energy cost per mile for different average speed intervals

rates have the similar patterns as Fig. 10. This is also due to the sample number
distribution among different speed intervals. Both of these results demonstrate
the capability of convergence for the proposed algorithm to the final stable
values. It will be very useful to obtain the estimations in a real-time and low
computational cost way.

Fig. 12 provides the function fitting results for average energy cost per mile
with regard to different average speeds of trip segments. The results show that
the changes are pretty small at low speeds and much difference can occur at high
speed values when increasing the used data points. This is because most of data
points have low average speed values and can converge to the stable values at the
very beginning. The intervals with high average speeds need more data points to
adjust and achieve the final state values. Fig. 13 illustrates the function fitting
results for variance of energy cost per mile with regard to different average trip
speed. Results for variance estimation show an opposite pattern to the mean
value estimation. More differences occur at low speed values. Actually this is
also caused by the number of data points. More data points can help to narrow
down the uncertainties and then reduce the values of variance.

All simulation results in this section show the good capability to estimate
the mean value and the corresponding variance in a real-time and adaptive
manner. During each real-time step, we can utilize the obtained estimations to
construct the up-to-date stochastic energy cost prediction model. This kind of
adaptive method has the strong robustness to adapt new measured data points.
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Figure 11: Variance value trace of energy cost per mile for different average speed intervals

Figure 12: Mean value trace of energy cost per mile for different average speed intervals
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Figure 13: Variance value trace of energy cost per mile for different average speed intervals

This makes sure that current models can always describe the newest energy cost
pattern and provide more accurate predictions.

6.2. Case Studies for Optimal Charging Decision Making

Case studies in this section are trying to demonstrate the functionality of
proposed optimal decision-making model. Itineraries from a real-world data set
“Chicago Regional Household Travel Inventory (CRHTI)” by CMAP (2007) in
Chicago are utilized. It is a comprehensive study of the demographic and travel
behavior characteristics of residents in the greater Chicago area. Two different
case studies are illustrated in this section: First, demonstration of charging de-
cision making strategies for a single selected itinerary; Second, charging analysis
for the whole itinerary dataset of CRHTI.

6.2.1. Case Studies for A Single Itinerary

A daily itinerary is selected from “Chicago Regional Household Travel Inven-
tory (CRHTI)”. The selected itinerary is a related long distance itinerary during
a weekday in Figure 14. This itinerary comes from a financial planner. It has an
overall distance of about 172 miles. This type of long-distance itinerary can help
to illustrate the power of our algorithm. It will show how the fully automated
short-range EV could finish a long-distance daily itinerary by using the current
public charging station network. In this daily itinerary, location 1 is the home,
and there are six different visited locations during this day. Figure 14 provides
the specific locations on Google Maps and also the corresponding arrival time
and departure time.
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Figure 14: A daily itinerary in Chicago Regional Household Travel Inventory

Figure 15 and Figure 16 provide the location information of level 2 charging
stations and DC fast charging stations respectively. Each visited location has its
own neighborhood charging infrastructure network. The range constraint (range
between charging stations and itinerary locations) used in this case study is 6
mile(about 10 km). The range constraint of 6 miles is just an example. This
constraint is determined by several realistic situations, for example, desirable
maximum percentage of “empty vehicle miles traveled”, density of charging
stations, etc. In these figures, we have provided the specific information of
latitude and longitude of six visited locations. The nearby charging station
information is obtained from the website of Alternative Fuels Data Center from
U.S. Department of Energy (AFDC (2017)). From these information, we can
see that there are no charging stations at the visited locations. If this financial
planner cannot leave this location to do the charging actions (this may always
happen due to the business requirement), most short-range EVs, e.g. Nissan
Leaf, cannot make this daily itinerary. However, by using fully autonomous
vehicles, the charging actions can be performed by the vehicle itself. This means
that charging stations don’t need to be at the visited location and the EV
owners will not care too much about the charging time. The following results
demonstrate how our proposed models and algorithms help to implement the
optimal charging decision-making under the connected and automated vehicles
framework.

Figure 17 provides the energy states when arriving at each location without
charging actions. In this figure, the starting location home is not considered.
We assume that it has a fully charged battery energy state at home. Number 7
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Figure 15: Level 2 charging station around the visited location with 6-mile range

Figure 16: DC fast charging station around the visited location with 6-mile range
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Figure 17: Energy state during the itinerary without charging actions

is used to represent the home for the final destination. The other six locations
are the corresponding visited places. A Nissan Leaf with battery capacity of
30kWh is used in this case study. Figure 17 checks four different situations.
According to the proposed stochastic energy cost model, energy cost on each
trip segment should be random and we have the algorithm to find the lower
bound and upper bound for the energy cost. Then four different situations,
i.e. lower bound, upper bound, average and random case, are demonstrated.
Without charging action during this itinerary, energy states will be negative
after several trips. This means that the charging actions outside home are
definitely necessary to complete this daily itinerary with enough energy.

In this case study, predictions of energy cost on all trip segments for the
multistage decision-making model can be categorized into two parts: First, the
average energy cost information on each trip is utilized by the deterministic
decision-making model; Second, the lower and upper bounds of energy cost are
used to construct the energy constraint in the robust model, and the random
energy cost information are applied into the energy state transition equation
for the dynamics of energy state. The nearby charging station information will
be fed into both models. According to the distance and travel time from vis-
ited location to charging stations, energy costs of charging actions are predicted
by the proposed energy consumption prediction model. These information are
fed into these two models respectively. Besides these energy cost information,
the charging capability of nearby charging stations and also the corresponding
charging cost are also necessary to specify the decision-making model. Once
all these information are collected and prepared, we can solve both of the de-
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Figure 18: Deterministic Charging Decision Making

terministic and robust decision-making problems to find the optimal charging
strategies.

Figure 18 provides the charging strategies by considering the average and
deterministic case. Figure 19 demonstrates the charging strategies with the con-
sideration of uncertainties of energy cost. Detailed distance information on each
trip segment, arrival and departure time at each visited location are specified.
The optimal charging strategies include the amount of charged energy and also
the location of selected charging station. For average situation, three charging
stations L3

c , L4
c and L5

c nearby L3
v, L4

v and L5
v respectively are selected to pre-

form charging actions. CAEV is charged by 15.2kWh, 4.69kWh and 12.3kWh,
respectively. For robust situation, the CAEV also make the charging actions
nearby these three locations but using different charging stations. The amount
of charged energy for each charging action is also different. They are 9.15kWh,
6.53kWh and 23.1kWh, respectively. In order to achieve safer charging strate-
gies with consideration of energy cost uncertainties, more overall energy are
charged in the robust situation.

Figure 20 provides more detailed comparisons between these two optimal
charging strategies. This result illustrates the energy state of CAEV at all
visited locations. Here location 7 is home as the destination. We can see that
both proposed charging strategies can make sure the energy state of CAEV
always positive. This means that a Nissan Leaf with 30kWh can have enough
energy to finish the itinerary by using the proposed charging actions. However,
different remaining energies have been derived for these two strategies when
they arrive home. It is reasonable that more energy remains for the robust
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Figure 19: Robust Charging Decision Making

strategy due to the consideration of energy cost uncertainties.

6.2.2. Case Studies on the Whole Dataset

In order to show the advantages of the proposed models, more comprehensive
studies are performed to simulate various scenarios with a huge of itineraries on
the whole dataset. Figure 21 illustrates all visited locations for all itineraries
in the whole CRHTI dataset and locations of Level 2 and DC fast charging
station in Chicago area from the website of Alternative Fuels Data Center from
U.S. Department of Energy (AFDC (2017)). These locations information and
the corresponding itinerary information are the input of our case studies. Each
valid itinerary has the same detailed information as that in single itinerary
case study. In total, 18826 itineraries are fed into the energy consumption and
charging decision model for case studies.

Figure 22 illustrates percentages of charging necessity for the investigated
itineraries by using the proposed energy consumption model in this paper. Our
research in this paper tries to study the charging decision making outside home.
It is valuable to see how often it is necessary for charging actions outside home.
Results show that most of daily itineraries in Chicago can be finished without
charging actions even with small battery initial energy state. However, more
and more itineraries will need charging actions by reducing the initial energy
state. This means that it is worth designing charging decision algorithm to help
the EVs finish their itineraries successfully even with a low initial battery energy
state for coming itineraries.

Figure 23 provides the simulation results by using the proposed CAEV charg-
ing decision making framework. Results in Figure 23 only includes simulations
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Figure 20: Energy state during the itinerary with charging actions

Figure 21: Visited locations distribution in the whole CRHTI and charging station locations
distribution (Level 2 and DC fast Charging station) in Chicago
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Figure 22: Percentages of charging necessity for all the itineraries with different initial energy
states

of itineraries which need charging actions. These itineraries are obtained from
calculations under the corresponding battery energy states in Figure 22. The
case of 20kWh has 1067 itineraries. The case of 16kWh has 1808 itineraries.
The case of 12kWh has 3209 itineraries. The case of 8kWh has 5871 itineraries.
Each itinerary is simulated, calculated and checked the same as what has done
in the case study of single itinerary. The charging decision making algorithm
provides the charging strategies by using the existing charging station network
as shown in Figure 21. If the itinerary with the proposed charging strategies
can be finished successfully (this means CAEV can always have positive energy
during the itinerary), we count this itinerary into the successful part. Therefore,
Figure 23 provides the percentages of successful itineraries under different initial
battery state conditions and also different available trip prediction information
in the decision making model. Here the one-step and two-step predictions are
discussed in detail in Section 4.3. It means how much future trip information we
can have or predict during the decision making process. For example, decision
making model with two-step prediction can have the prediction capability of two
trip segments during the itinerary. Results in Figure 23 shows that, under the
same initial battery energy state, a decision making model with stronger pre-
diction capability can make more itineraries successful. We can also see that,
CAEVs with the proposed charging decision making algorithm can complete
most of the trips even at a very low initial battery state, e.g. 8kWh, only by
using the current existing charging station network. There are still some failed
itineraries. This is limited by the long distance of some itineraries and also den-
sity of charging stations. This means more charging station are still necessary
to make sure all the itineraries can be completed successfully. Percentages of
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Figure 23: Percentages of successful itineraries for CAEVs under different initial battery
energy states and prediction strategies by using current existing charging station network

successful itineraries are smaller when EVs have larger initial energy state. This
is due to the smaller size of overall simulated itineraries. Actually the absolute
number of successful itineraries is larger, which can be calculated by using the
percentage value and the overall itinerary number.

All these case studies in this section demonstrate that the introduced charg-
ing decision making algorithm can help CAEVs to reduce the dependency on
charging stations. Even only using the current existing charging station net-
work and at low initial battery energy state conditions, most of itineraries can
be completed successfully. This means that CAEVs equipped with the intro-
duced charging decision making algorithm can reduce the range anxiety.

7. Conclusions and Discussions

Optimal charging decision-making has been studied in this paper under a
connected and automated electric vehicles framework for personal usage. A
data-driven method based on numerous real-world data has been proposed to
construct multi-channel stochastic energy consumption prediction model. The
number of channels in this model determines the resolution of energy cost pre-
diction. CAEVs equipped with the introduced real-time updating algorithm
have the online learning capability for model evolution based on new obtained
real-world data. This can keep the energy consumption model always up-to-
date for accurate predictions. Based on the energy cost prediction model, both
deterministic and robust multistage charging decision-making models are estab-
lished for optimal strategies during a daily itinerary. They will satisfy different
strategy requirements. Robust decision-making model is designed to provide

31



safer charging strategies under worst-case considerations of energy cost uncer-
tainties. Simulations and case studies demonstrate the functionality of the pro-
posed methodology. The results also show the potential ability of CAEV to
reduce the range anxiety and charging infrastructure dependency.

The energy consumption prediction model in this paper is characterized
only by average speed. It is a one-dimensional multi-channel model. This may
cause large uncertainties. In the future, high-resolution real-world data of en-
ergy consumption under many different conditions will be collected and mod-
eled to reduce the uncertainties in the energy cost prediction by constructing
multi-dimensional multi-channel models. High-resolution energy cost predic-
tion models will help to improve many decision-making problems in sustainable
transportation, for example the charging strategies in this paper, energy-aware
routing strategies, etc.

The charging decision making framework needs to know itinerary informa-
tion in advance. The itinerary information of the entire day is necessary to
achieve the global optimality of charging strategies. However, spatial and tem-
poral fluctuations of itinerary information limit us to achieve this. The intro-
duced prediction process in current framework can release this limitation in
some extent, but more powerful prediction technologies and comprehensive op-
timization models for dynamic itinerary information are necessary for better
charging decision making in the future work.

This charging decision making framework for CAEVs aims to minimize the
charging costs and time outside home during a daily itinerary without consid-
eration of the charging costs and time at home. This limits the introduced
framework to be applied to CAEV users who may not have guaranteed charg-
ing infrastructure at home. In the future work, it is valuable to generalize the
framework to include not only the charging cost at home but also other types
of charging cost, e.g. charging at home and workplace, etc.

Current existing charging infrastructure networks are utilized in this paper.
However, charging demand patterns from CAEVs in the future will be different
from the current transportation network. The future placement of charging
infrastructure should involve different patterns of energy demand from CAEVs.
A more promising way should combine charging decision making and energy
supply together for CAEVs involved transportation system in order to achieve
more sustainable system design and implementation.
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